Behavior and practices of managing sanitation facilties in two low-income areas of Abidjan, Cote d’Ivoire

Author

Phaniwa Zie Zoumana Coulibaly

Published

June 27, 2024

Introduction

In Abidjan (Cote d’Ivoire), the situation of sanitation was exacerbated by the sociopolitical and military crisis of 2002-2011 (Ouattara et al. 2017). This study was carried out in two low-income parts of Abidjan in order to understand the behavior and practices of the population in terms of managing sanitation facilities, as well as to assess the diseases they face.

Methods

The data were collected from household surveys in two low_income areas of Abidjan. Indeed, the surveys included 101 households in Abobo and 106 households from Yopougon. The survey was focusing on practices related to the management of sanitation facilities (latrines and tanks).

Import

library(readxl)
read_excel(here::here("data/raw/Survey_base.xlsx"))
# A tibble: 207 × 28
   date       area_name sex    age   education   living_time housing_type status
   <chr>      <chr>     <chr>  <chr> <chr>       <chr>       <chr>        <chr> 
 1 2018-17-04 Yopougon  male   18-35 primary     2013        individual   renter
 2 2018-17-04 Yopougon  female 36-49 no          1981        common cour… owner 
 3 2018-17-04 Yopougon  female 18-35 high school 2007        common cour… renter
 4 2018-17-04 Yopougon  male   18-35 no          2016        common cour… renter
 5 2018-17-04 Yopougon  female 18-35 no          2018        common cour… renter
 6 2018-17-04 Yopougon  male   18-35 primary     2018        common cour… renter
 7 2018-17-04 Yopougon  female 18-35 no          2015        common cour… renter
 8 2018-17-04 Yopougon  male   18-35 no          2000        common cour… renter
 9 2018-17-04 Yopougon  male   36-49 graduate    NA          common cour… renter
10 2018-17-04 Yopougon  male   18-35 graduate    2014        common cour… renter
# ℹ 197 more rows
# ℹ 20 more variables: latrine_presence <chr>, location <chr>,
#   latrine_type <chr>, using_latrines <chr>, users <chr>,
#   impacts_of_sharing <chr>, latrine_cleaning <chr>, cleaning_freqce_wk <chr>,
#   tank_presence <chr>, tank_location <chr>, latrines_nb <chr>,
#   tank_operation <chr>, emptying_frqce_yr <chr>, emptying_mode <chr>,
#   emptying_price <chr>, household_wastewater <chr>, garbage_cont <chr>, …
library(tidyverse)

Import data

read_excel(here::here("data/raw/Survey_base.xlsx"))
# A tibble: 207 × 28
   date       area_name sex    age   education   living_time housing_type status
   <chr>      <chr>     <chr>  <chr> <chr>       <chr>       <chr>        <chr> 
 1 2018-17-04 Yopougon  male   18-35 primary     2013        individual   renter
 2 2018-17-04 Yopougon  female 36-49 no          1981        common cour… owner 
 3 2018-17-04 Yopougon  female 18-35 high school 2007        common cour… renter
 4 2018-17-04 Yopougon  male   18-35 no          2016        common cour… renter
 5 2018-17-04 Yopougon  female 18-35 no          2018        common cour… renter
 6 2018-17-04 Yopougon  male   18-35 primary     2018        common cour… renter
 7 2018-17-04 Yopougon  female 18-35 no          2015        common cour… renter
 8 2018-17-04 Yopougon  male   18-35 no          2000        common cour… renter
 9 2018-17-04 Yopougon  male   36-49 graduate    NA          common cour… renter
10 2018-17-04 Yopougon  male   18-35 graduate    2014        common cour… renter
# ℹ 197 more rows
# ℹ 20 more variables: latrine_presence <chr>, location <chr>,
#   latrine_type <chr>, using_latrines <chr>, users <chr>,
#   impacts_of_sharing <chr>, latrine_cleaning <chr>, cleaning_freqce_wk <chr>,
#   tank_presence <chr>, tank_location <chr>, latrines_nb <chr>,
#   tank_operation <chr>, emptying_frqce_yr <chr>, emptying_mode <chr>,
#   emptying_price <chr>, household_wastewater <chr>, garbage_cont <chr>, …
data_raw <- read_excel(here::here ("data/raw/Survey_base.xlsx"))

Rename column

data_clean<-data_raw|>
  rename(stay_time = living_time,
         lat_facilities = latrine_presence,
         facilities_type = latrine_type,
         lat_use = using_latrines,
         nb_user = users,
         facilities_loc = location,
         lat_care = latrine_cleaning,
         clean_freq_wk = cleaning_freqce_wk,
         tk_status = tank_operation,
         empty_freq_yr = emptying_frqce_yr,
         empty_mode = emptying_mode,
         empty_price = emptying_price,
         wastwat_dispos = household_wastewater,
         waste_cont = garbage_cont,
         waste_cont_loc = garbage_loc,
         cont_empy_wk = garbage_emptying_wk,
         common_ill = common_diseases
         ) 
  data_ready<- data_clean [,-c(1,4,6)]

Harmonised data

data_clean <- data_ready|>
  mutate(nb_user_new=case_when(
    nb_user == "1_3"~"2",
    nb_user == "4_6"~"5",
    nb_user == "7_10"~"8.5",
    nb_user == ">10"~ "10"
  )) |>
  mutate(clean_freq = case_when(
    clean_freq_wk == "1_3" ~ "2",
    clean_freq_wk == ">4"~"4"
  )) |>
  mutate(lat_nb_new= case_when(
    latrines_nb == "1_5"~"3",
    latrines_nb == "6_10"~"8",
    latrines_nb == ">10"~"10"
  )) |>
  mutate(empty_price_new= case_when(
    empty_price == "10000_20000"~"15000",
    empty_price == "20000_40000"~"30000",
    empty_price == ">40000"~"40000"
  )) |>
  mutate(cont_empty_wk=case_when(
    cont_empy_wk == "1_3"~"2",
    cont_empy_wk == "4_7"~"5.5"
  )) |>
mutate(nb_user_new = as.numeric(nb_user_new))|>
mutate(clean_freq= as.numeric(clean_freq)) |>
mutate(lat_nb_new= as.numeric(lat_nb_new)) |>
mutate(empty_price_new = as.numeric(empty_price_new)) |>
mutate(cont_empty_wk = as.numeric(cont_empty_wk))

Data per area

library(dplyr)
yop_data <- data_clean |>
  filter(area_name == 'Yopougon') 
  
Abobo_data <- data_clean |>
  filter(area_name == 'Abobo')

#Results

lat_use_per_area<-data_clean|>
  filter(!is.na(lat_nb_new))  |> 
   group_by(area_name)|>
summarise(
 count = n(),
 mean = mean(lat_nb_new),
 sd = sd(lat_nb_new),
 median = median(lat_nb_new),
 min = min(lat_nb_new),
 max = max(lat_nb_new)
 )
library(gt)
library(knitr)
lat_use_per_area |> 
    gt() |> 
    tab_header(title = "Latrines using by study areas",
               subtitle = "Data from 2 neighborhoods") |>
    fmt_number(columns = count:max, decimals = 0) |> 
    cols_label(area_name = "study areas")
Latrines using by study areas
Data from 2 neighborhoods
study areas count mean sd median min max
Abobo 98 6 3 6 3 8
Yopougon 106 6 3 8 3 10

Table 1 highlights the fact that people in the different neighborhoods studied have identical latrine use habits.

Table 1: Latrines using by study areas. Data from 2 neighborhoods.
lat_use_per_area |> 
    rename(`study areas` = area_name)
# A tibble: 2 × 7
  `study areas` count  mean    sd median   min   max
  <chr>         <int> <dbl> <dbl>  <dbl> <dbl> <dbl>
1 Abobo            98  5.5   2.51    5.5     3     8
2 Yopougon        106  6.03  2.66    8       3    10
library(questionr)
 describe (yop_data$tk_status)
[106 obs.] 
character: "performs well" "performs well" "performs well" "performs well" "performs well" "not working well" "performs well" "not working well" "performs well" "performs well" ...
NAs: 0 (0%) - 3 unique values

                   n     %
"NA"               3   2.8
not working well  44  41.5
performs well     59  55.7
Total            106 100.0
 describe (Abobo_data$tk_status)
[101 obs.] 
character: "NA" "performs well" "not working well" "performs well" "performs well" "not working well" "performs well" "performs well" "performs well" "performs well" ...
NAs: 0 (0%) - 3 unique values

                   n     %
"NA"              10   9.9
not working well  35  34.7
performs well     56  55.4
Total            101 100.0
tank_statut_Abobo<-c("failure_presence", "no_failure","NA")
Number<-c(35, 56 ,10)
Frequency<-c(34.6, 55.4 , 9.9)

tb1 <-data.frame(tank_statut_Abobo,Number,Frequency)
tank_statut_Yop<-c("failure_presence", "no_failure","NA")
Number<-c(44, 59 ,3)
Frequency<-c(41.5, 55.6 , 2.8)

tb2 <-data.frame(tank_statut_Yop,Number,Frequency)
ggplot(data = tb1,
   mapping = aes(x= tank_statut_Abobo, 
                     y= Frequency,
                 fill = tank_statut_Abobo))+
  geom_col()

ggplot(data = tb2,
   mapping = aes(x= tank_statut_Yop, 
                     y= Frequency,
                 fill = tank_statut_Yop))+
  geom_col()

The results show that a lot of tanks are dysfunctional in the study area. In Abobo 45% of septik tank doesn’t work well, while in Yopougon it concerns 49% of septik tank .

layout(matrix(1:2,1,2))
ggplot(data = tb1,
   mapping = aes(x= tank_statut_Abobo, 
                     y= Frequency,
                 fill = tank_statut_Abobo))+
  geom_col();

ggplot(data = tb2,
   mapping = aes(x= tank_statut_Yop, 
                     y= Frequency,
                 fill = tank_statut_Yop))+
  geom_col()

Regarding the health status of the population, the findings highlighted malaria and typhoid fever as the most common diseases in the study area. In the municipality of Abobo , a large proportion of the population was affected by typhoid fever (77%), and only a few by malaria (17%). As far as Yopougon is concerned, malaria is the most common, representing 70%, while typhoid fever is 26%.

describe (yop_data$common_ill)
[106 obs.] 
character: "malaria" "malaria" "malaria" "malaria" "malaria" "infections" "malaria" "malaria" "typhoid fever" "malaria" ...
NAs: 0 (0%) - 4 unique values

                n     %
diarrhea        2   1.9
infections      3   2.8
malaria        73  68.9
typhoid fever  28  26.4
Total         106 100.0
Deseas_Abobo<-c("Malaria","Typhoid_fever","Infections","Diarrhea","na")
Frequency<-c(16.8 , 77.2 , 1.9 , 0 ,3.9)

tb3 <-data.frame(Deseas_Abobo,Frequency)
ggplot(data = tb3,
   mapping = aes(x= Deseas_Abobo,
                 y= Frequency
                 ))+
  geom_col()

Deseas_Yopougon<-c("Malaria","Typhoid_fever","Infections","Diarrhea","na")
Frequency<-c(68.8 , 26.4 , 2.8 , 1.8 ,0)

tb4 <-data.frame(Deseas_Yopougon,Frequency)
ggplot(data = tb4,
   mapping = aes(x= Deseas_Yopougon,
                 y= Frequency
                 ))+
  geom_col()

Conclusions

This research shows that people living in the townships of Abobo and Yopougon use shared latrines. This is contributing to septic tank failure, as well as the occurrence of diseases such as malaria and typhoid fever. However, promoting awareness and establishing sustainable sanitation management initiatives could help to improve people’s living conditions.