library(tidyverse)
library(dplyr)
My project
Description
REASON FOR CHOOSING THE DATA
I chose the data about the composition of solid waste because the issue of solid waste management is a pressing challenge faced by the entire world.
As the global population continues to urbanize and consumption patterns shift, the generation of solid waste is expected to increase and understanding the composition is a crucial first step in handling the issue.
Import
::read_excel(path = here::here("data/raw/Dominic.xlsx")) readxl
# A tibble: 217 × 15
iso3c region_id country_name income_id gdp population_populatio…¹
<chr> <chr> <chr> <chr> <chr> <dbl>
1 ABW LCN Aruba HIC 35563.… 103187
2 AFG SAS Afghanistan LIC 2057.0… 34656032
3 AGO SSF Angola LMC 8036.6… 25096150
4 ALB ECS Albania UMC 13724.… 2854191
5 AND ECS Andorra HIC 43711.… 82431
6 ARE MEA United Arab Emirates HIC 67119.… 9770529
7 ARG LCN Argentina HIC 23550.… 42981516
8 ARM ECS Armenia UMC 11019.… 2906220
9 ASM EAS American Samoa UMC 11113.… 55599
10 ATG LCN Antigua and Barbuda HIC 17965.… 96777
# ℹ 207 more rows
# ℹ abbreviated name: ¹population_population_number_of_people
# ℹ 9 more variables: composition_food_organic_waste_percent <chr>,
# composition_glass_percent <chr>, composition_metal_percent <chr>,
# composition_other_percent <chr>, composition_paper_cardboard_percent <chr>,
# composition_plastic_percent <chr>,
# composition_rubber_leather_percent <chr>, composition_wood_percent <chr>, …
<- readxl::read_xlsx(path = "/cloud/project/data/raw/Dominic.xlsx") Dominic
<- Dominic |>
dominic_processed_1 select(iso3c:composition_plastic_percent) |>
rename(region = region_id,
country = country_name,
population = population_population_number_of_people,
food_organic_waste = composition_food_organic_waste_percent,
glass = composition_glass_percent,
metal = composition_metal_percent,
other = composition_other_percent,
paper_cardboard = composition_paper_cardboard_percent,
plastic = composition_plastic_percent) |>
filter(food_organic_waste != "NA",
!= "NA",
glass != "NA",
metal != "NA",
other != "NA",
paper_cardboard != "NA")
plastic
<- dominic_processed_1 |>
dominic_processed mutate(food_organic_waste = as.numeric(food_organic_waste),
glass = as.numeric(glass),
metal = as.numeric(metal),
other = as.numeric(other),
paper_cardboard = as.numeric(paper_cardboard),
plastic = as.numeric(plastic))
write_csv(dominic_processed, file = "/cloud/project/data/processed/dominic_processed.csv")